544 research outputs found

    Making apartments affordable: moving from speculative to deliberative development

    Get PDF
    Urban consolidation policies in Australia presuppose apartments as the new dominant housing type, but much of what the market has delivered is criticised as over-development, and as being generic, poorly-designed, environmentally unsustainable and unaffordable. In contrast to the usual focus on planning regulation and construction costs as the primary issues needing to be addressed in order to increase the supply of quality, affordable apartment housing this paper uses Ball’s (1983) ‘structure of provision’ approach to outline the key processes informing apartment development to reveal a substantial gap in critical understanding of how apartments are developed in Australia, and identifies economic problems not previously considered by policymakers. Using mainstream economic analysis to review the market itself, the authors found high search costs, demand risk, problems with exchange, and lack of competition present key barriers to achieving greater affordability and limit the extent to which ‘speculative’ developers can respond to the preferences of would be owner-occupiers of apartments. The existing development model, which is reliant on capturing uplift in site value, suits investors seeking rental yields in the first instance and capital gains in the second instance, and actively encourages housing price inflation. This is exacerbated by lack of density restrictions, such as have existed in inner Melbourne for many years, which permits greater yields on redevelopment sites. The price of land in the vicinity of such redevelopment sites is pushed up as landholders\u27 expectation of future yield is raised. All too frequently existing redevelopment sites go back onto the market as vendors seek to capture the uplift in site value and exit the project in a risk free manner. The paper proposes three major reforms. Firstly, that the market for apartment development be re-designed following insights from the economic field of ‘Market Design’ (a branch of Game Theory). A two-sided matching market for new apartments is proposed, where demand-side risks can be mitigated via consumer aggregation. Secondly, consumers should be empowered through support for  ‘deliberative’, or ‘do-it-yourself’ (DYI) development models, in order to increase competition, expand access, and promote responsiveness to consumer needs and preferences. Finally, planning schemes need to impose density restrictions (in the form of height limits, floor space ratios or bedroom quotas) in localities where housing demand is high, in order to dampen speculation and de-risk development by creating certainty. However restrictions on over-development on larger infill sites needs to be offset by permitting intensification of ‘greyfield’ suburbs. Aggregating existing housing lots to enable precinct regeneration and moderate height and density increases would permit better use of airspace thus allowing design outcomes that can optimise land use while retaining amenity

    Pattern recognition receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Pattern Recognition Receptors (PRRs, [89]) (nomenclature as agreed by NC-IUPHAR sub-committee on Pattern Recognition Receptors, [17]) participate in the innate immune response to microbial agents, the stimulation of which leads to activation of intracellular enzymes and regulation of gene transcription. PRRs express multiple leucine-rich regions to bind a range of microbially-derived ligands, termed PAMPs or pathogen-associated molecular patterns or endogenous ligands, termed DAMPS or damage-associated molecular patterns. These include peptides, carbohydrates, peptidoglycans, lipoproteins, lipopolysaccharides, and nucleic acids. PRRs include both cell-surface and intracellular proteins. PRRs may be divided into signalling-associated members, identified here, and endocytic members, the function of which appears to be to recognise particular microbial motifs for subsequent cell attachment, internalisation and destruction. Some are involved in inflammasome formation, and modulation of IL-1β cleavage and secretion, and others in the initiation of the type I interferon response. PRRs included in the Guide To PHARMACOLOGY are:Catalytic PRRs (see links below this overview)Toll-like receptors (TLRs)Nucleotide-binding oligomerization domain, leucine-rich repeat containing receptors (NLRs, also known as NOD (Nucleotide oligomerisation domain)-like receptors)RIG-I-like receptors (RLRs)Caspase 4 and caspase 5 Non-catalytic PRRsAbsent in melanoma (AIM)-like receptors (ALRs)C-type lectin-like receptors (CLRs)Other pattern recognition receptorsAdvanced glycosylation end-product specific receptor (RAGE

    Pattern recognition receptors in GtoPdb v.2023.1

    Get PDF
    Pattern Recognition Receptors (PRRs, [110]) (nomenclature as agreed by NC-IUPHAR sub-committee on Pattern Recognition Receptors, [20]) participate in the innate immune response to microbial agents, the stimulation of which leads to activation of intracellular enzymes and regulation of gene transcription. PRRs express multiple leucine-rich regions to bind a range of microbially-derived ligands, termed PAMPs or pathogen-associated molecular patterns or endogenous ligands, termed DAMPS or damage-associated molecular patterns. These include peptides, carbohydrates, peptidoglycans, lipoproteins, lipopolysaccharides, and nucleic acids. PRRs include both cell-surface and intracellular proteins. PRRs may be divided into signalling-associated members, identified here, and endocytic members, the function of which appears to be to recognise particular microbial motifs for subsequent cell attachment, internalisation and destruction. Some are involved in inflammasome formation, and modulation of IL-1β cleavage and secretion, and others in the initiation of the type I interferon response. PRRs included in the Guide To PHARMACOLOGY are:Catalytic PRRs (see links below this overview)Toll-like receptors (TLRs)Nucleotide-binding oligomerization domain, leucine-rich repeat containing receptors (NLRs, also known as NOD (Nucleotide oligomerisation domain)-like receptors)RIG-I-like receptors (RLRs)Caspase 4 and caspase 5 Non-catalytic PRRsAbsent in melanoma (AIM)-like receptors (ALRs)C-type lectin-like receptors (CLRs)Other pattern recognition receptorsAdvanced glycosylation end-product specific receptor (RAGE

    Pattern recognition receptors in GtoPdb v.2021.3

    Get PDF
    Pattern Recognition Receptors (PRRs, [104]) (nomenclature as agreed by NC-IUPHAR sub-committee on Pattern Recognition Receptors, [18]) participate in the innate immune response to microbial agents, the stimulation of which leads to activation of intracellular enzymes and regulation of gene transcription. PRRs express multiple leucine-rich regions to bind a range of microbially-derived ligands, termed PAMPs or pathogen-associated molecular patterns or endogenous ligands, termed DAMPS or damage-associated molecular patterns. These include peptides, carbohydrates, peptidoglycans, lipoproteins, lipopolysaccharides, and nucleic acids. PRRs include both cell-surface and intracellular proteins. PRRs may be divided into signalling-associated members, identified here, and endocytic members, the function of which appears to be to recognise particular microbial motifs for subsequent cell attachment, internalisation and destruction. Some are involved in inflammasome formation, and modulation of IL-1β cleavage and secretion, and others in the initiation of the type I interferon response. PRRs included in the Guide To PHARMACOLOGY are:Catalytic PRRs (see links below this overview)Toll-like receptors (TLRs)Nucleotide-binding oligomerization domain, leucine-rich repeat containing receptors (NLRs, also known as NOD (Nucleotide oligomerisation domain)-like receptors)RIG-I-like receptors (RLRs)Caspase 4 and caspase 5 Non-catalytic PRRsAbsent in melanoma (AIM)-like receptors (ALRs)C-type lectin-like receptors (CLRs)Other pattern recognition receptorsAdvanced glycosylation end-product specific receptor (RAGE

    Agriculture: Environmental Problems and Directions

    Get PDF
    Review of Iowa\u27s water quality situation has both good news and bad news components. The good news is that since passage of the 1972 federal Clean Water Act, commendable progress has been made in reducing the discharge of municipal and industrial waste pollutants into Iowa\u27s waters. The progress made in reducing pollution from these point sources is attributable to a number of factors, including the enactment of effective laws and regulations, development and implementation of improved waste management practices, and voluntary and enforced compliance

    On the Horizon

    Get PDF
    • …
    corecore